Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-180433

ABSTRACT

Traditionally mistletoes Dendrophthoe pentandra (L.) Miq known in Indonesia is to cure cough, hypertension, diabetes, cancer, ulcers, smallpox, diuretic, skin infection and after child-birth. The objective of this study was to evaluate the toxic effects at short and long term the Dendrophthoe pentandra ethanol extract in mice. In the acute test, the limit test dose of 40 g/kg of aqueous and hydroalcoholic extracts were administered orally to mice and then observed individually 2 h post-dosing and at least once daily for 14 days. Sub-chronic toxicity was evaluated after a daily oral administration of 420 mg/kg in a suspension of 2 % PGA for 90 days to Wistar rats. Animals were sacrificed and their organs were examined. The results showed LD50 values for acute toxicity at a dose of 17.78 and 12.59 g/kg which was comparable to a dose of 12.45 g/kg and 8.81 g/kg in rats. From the subchronic, the values of the parameters of hemoglobin, hematocrit, leukocytes, and erythrocytes index were still within the range of the reference. From histopathological examination value, the results revealed some abnormalities. Our results suggest the ethanol extract of Dendrophthoe pentandra have LD50 values which have practically not toxic but is not recommended to be used for a long periode.

2.
Article in English | IMSEAR | ID: sea-152600

ABSTRACT

This paper have a purpose to determine the condition of analysis of betamethasone and dexchlorpheniramine maleat on tablet using ultraviolet spectrophotometry and high perfomance liquid chromatography (HPLC) methods. The spectrophotometry method used phosphate buffer pH 7,2 as the solvent, whereas the HPLC method used HPLC, LC-10AT VP, Shimadzu;μ BondapakTM C18 10μm 125Å, 4,6 x 150 mm coloumn Waters (Irlandia); methanol buffer (45:55) pH 7,2 as mobile phase; ultraviolet detection 240 nm; flow rate 1 mL/menit. Result showed that the correlation coefficient of spectrophotometry were 0,9998 and 0,9997 for dexchlorpheniramine maleat dan betamethasone at wavelength 239 and 262. The LOD for spectrophotometry were 2,261 ppm for dexchlorpheniramine maleat at λ 239 ; 0,707 ppm for dexchlorpheniramine maleat at λ 262 ; 0,088 ppm for betamethasone at λ 239 ; dan 0,127 for betamethasone at λ 262, the LOQ were 7,536 ppm for dexchlorpheniramine maleat at λ 239 ; 2,357 ppm for dexchlorpheniramine maleat at λ 262 ; 0,295 for betamethasone at λ 239 ; dan 0,425 for betamethasone at λ 262. The recovery percentation of the spectrophotometry methods for dexchlorpheniramine maleat and betamethasone were 101,32% and 100,77%. The recovery percentation of the HPLC methods for dexchlorpheniramine maleat and betamethasone were 107,6% and 100,8%. Coefficient of variance of the spectrophotometry methods methods for dexchlorpheniramine maleat and betamethasone were 1,413 % and 0,466 %, coeffisien of variance of the robustness test of the spectrophotometry methods for dexchlorpheniramine maleat and betamethasone were 0,834 % and 1,140 %. Based on this research has been found that the the analysis method of spectrophotometry was eligible for the validation parameter value. These data may be applied in Pharmaceutical industries.

3.
Article in English | IMSEAR | ID: sea-151646

ABSTRACT

Xanthorrhizol (XNT) is one of major compounds from temulawak`s rhizome and its activity in several cancer cells is known. The aim of this study was to identify mechanism of xanthorrhizol from temulawak`s rhizome as an hERα inhibitor against breast cancer human cell lines. The cytotoxicity of XNT from temulawak`s rhizome on T47D human breast cancer cells lined by sulforhodamine B (SRB) method has been carried out, while molecular docking simulation and pharmacophore modelling methods were employed to predict mechanism of xanthorrhizol as hER inhibitor. Cytotoxicity studies showed that XNT of the isolated and standard had an IC50 100 and 55.50 μg/mL in T47D cells, respectively. Subsequently, molecular docking interaction showed that XNT might be able to compete with estradiol (E2) as a potential ERα inhibitor with the calculated binding free-energy of -8.2 kcal/mol, even the compound superimposed with tamoxifen (4-OHT). XNT formed hydrogen bonds with Arg394 and Glu353 as mention E2 and tamoxifen also formed same interaction with same residue and interacted hydrophobic bonds similar to 4-OHT with: Leu387, Leu384, Leu391, Phe404, L349, Leu346, Met388, and Leu525 of estrogen alpha Ligan Binding Domain (LBD), although 4-OHT indicated stronger hydrophobic when the tail of tamoxifen interacted with Tyr347, Asp351, Trp383 and Leu428. XNT missed two chemical features into HipHop models pharmacophore thus may result in reduced inhibitory activity against T47D compared than 4-OHT. The xanthorrhizol mechanism as a hER inhibitor is postulated as partial estrogen antagonist, is justifiable based on its competitive characteristic versus tamoxifen (OHT-200) which was located on the active side of HER-α.

SELECTION OF CITATIONS
SEARCH DETAIL